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Introduction 

Let g=@J,ogj be a graded Lie algebra over a field k [l, p. 181; e.g. let g be the 

rational homotopy Lie algebra rr*(Q2s) @ Q of a simply connected topological space 

s. 

The Avramov-Felix conjecture [l , p. 1111, in its topological version, says that the 

rational homotopy Lie algebra of a space of finite rational Lusternik-Schnirelmann 

category is either finite dimensional as a vector space, or contains a free Lie 

subalgebra on two generators. 

When the L.S. category is one, the conjecture is trivially true, since the entire Lie 

algebra is then free. In category two there are two cases; when the space is coformal 

and when it is not. The case where the space is not coformal is treated in [5] and 

[6], there is a canonical way to find a free Lie subalgebra, and the conjecture is true 

in this case. 

A coformal space of L.S. category two is a space such that the enveloping algebra 

of the rational homotopy Lie algebra has global dimension two. For such a space, 

we prove a weaker form of the Avrmaov-Felix conjecture. 

Theorem 1. Let g = @,,, gj be a graded Lie algebra over a field k. If its enveloping 
algebra U(g) has global dimension two, then either g is finite dimensional as a vector 
space, or U(g) contains a free subalgebra on two homogeneous generators. 

The idea behind the proof is that the condition of having no free subalgebras 

translates into the nice ring-theoretical property of having a classical quotient field. 

We hope that this condition is also easier to work with for coformal spaces of higher 

category. Hence, the weaker form of the Avramov-Felix conjecture corresponding 

to Theorem 1 might be more accessible. 

0022-4049/85/$3.30 0 1985, Elsevier Science Publishers B.V. (North-Holland) 



214 R. B@gvad 

1. Reduction to the case of one relation 

We Will consider fl,,,, = @,,,, flzj, and for this we need two lemmas. 

Lemma 1. Let g = oj,, R2j be a graded Lie algebra. if U(g) does not contain a free 
subalgebra on two homogenous generators, then it has a classical quotient field. 

Proof. Since g is concentrated in even degrees, it is a classical (ungraded) Lie 

algebra, and so U(g) has no zero-divisiors. But since U(g) has no free subalgebra 

on two homogenous generators, it satisfies the Ore conditions [7] for homogenous 

elements. If a and b are two homogenous elements, there is then a relation between 

them which can be written ac= bd for some non-zero homogenous elements c and 

d. Thus, it is possible to invert every non-zero homogenous element. The resulting 

graded field we denote by K. 

Lemma 2. Let g = a,,0 fly be a finitely generated graded Lie algebra such that 
U(g) has global dimension two. If U(g) does not contain a free subalgebra on two 
homogenous generators, then g is finitely presented and, in a minimal presentation, 
the number of relations is one less than the number of generators. 

Proof. Let 0 + F2 + Fl -+ U(g) -+ k -+ 0 be a minimal free resolution of k over U(g). 

The ranks of F2 and Fl are the number of relations and generators, respectively. 

Tensor the exact sequence with K. It is still exact, and we have kOUtgj K=O since 

k is annihilated by every homogenous element of positive degree. The rank of free 

K-modules is well defined since K is a graded field. Thus, it only remains to count 

the ranks. 

Proof of Theorem 1. Assume U(g) has no free subalgebra on two homogenous 

generators. Consider a Lie subalgebra h of Reven generated by two linearly indepen- 

dent homogenous elements. Clearly, U(h) has global dimension two and has no free 

sublagebra. Thus, by Lemma 2, U(h) has one relation only. In the next section we 

prove that U(h) is then commutative. Hence, geYen is abelian. Since the global 

dimension is at most two, geYen has dimension at most two as a vector space. In [4] 

it is proved that the dimension of fl& is then also not greater than two, and thus 

g is finite dimensional as a vector space. In fact, if g is generated by elements of 

degree one, and k is algebraically closed, then g is the product of two free Lie 

algebras on one generator each. 

2. The case of one relation 

To prove Theorem 1, it remains to consider U(h), where lj is generated by two 

homogenous elements of even degree, and has one relation only. We prove U(h) is 

then commutative; i.e., h is abelian. 
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Proposition 1. Let U(f)) be given b_v U(b) = k(x,y)/(r), where x and y are homo- 
genous elements of even degree, and where r is a homogenous Lie element. If U(Q) 
does not contain a free subalgebra on two homogenous generators, then U(b) is 
commutative. 

Proof. Let < be the ordering of the monomials of k(x, y) defined by M<N if the 

length of A4 is less than the length of N, and by lexicographical ordering of 

monomials of the same length. Let h(r) be the highest term of r in this ordering. 

If h(r) is combinatorially free as a one-element set (cf. [2]), then by [2, Theorem 

1.4 and 2.61, two homogenous elements of k(x, y) that generate a free sublagebra 

of k(x, y)/(h(r)) also generate a free subalgebra of U(lj). 

We use a property of Lie elements [8, p. 151 to show that h(r) is combinatorially 

free. When r is a Lie element, h(r) is a monomial with the following property; if 

h(r) = uu for some non-trivial monomials u and u, then UD > uu. 

Assume h(r) is not combinatorially free; i.e., there are non-trivial factorizations 

h(r) =ab= bc. It is easy to see that there are then elements m and n, such that 

a = mn, b = (mn)‘m for some integer i, and c = nm. Using this, 

h(r) = ((mn)‘m)(nm) = uu > uu = (nm)((mn)‘m), 

and so mn>nm. But also 

h(r) = (mn)((mn)‘m) = u/u’> u’u’= ((mn)‘m)(mn), 

and hence nm>mn, which is a contradiction. 

It only remains to use [3], which contains complete results on free subalgebras of 

rings with monomial relations. In our case, by [3], k(x, y)/(h(r)), and hence U(Ij), 

contains a free subalgebra if h(r) is not xy or yx. But when h(r) is xy or yx, then 

r= [x, y], and so U(b) is commutative, which was to be proved. 
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